Knauf Knauf

Έρευνα & ανάπτυξη

Ερωτήσεις για το μέλλον λύσεις για το παρόν

Weiter

Ο σταθερός προσανατολισμός της εταιρείας στην ποιότητα, επιβάλλει την δραστηριοποίησή της στην Έρευνα και Ανάπτυξη. Με στόχο την ανάπτυξη καινοτομικών προϊόντων και συστημάτων για το αύριο, συνδυάζουμε την ικανότητα, την γνώση, το ερευνητικό πνεύμα, την εμπειρία της αγοράς και την δημιουργικότητα.

Έτσι, αναπτύσσουμε στρατηγικές συμμαχίες με ερευνητικά ιδρύματα και ακαδημαϊκά ινστιτούτα στην Ελλάδα και την Ευρώπη, ηγούμενοι σε διευρωπαϊκά consortia της Ευρωπαϊκής Ενωσης (Brite Euram, Growth) αλλά και συμμετέχοντας σε διμερείς ερευνητικές προσπάθειες με Ελληνικά Πανεπιστήμια (Εθνικό Μετσόβιο Πολυτεχνείο, Πανεπιστήμιο Πατρών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης).

Έρευνα και Αναπτυξη Knauf

Η συνεχής εξέλιξη των προϊόντων μας και των υπηρεσιών μας, η διαρκής βελτίωση των ήδη αξιόπιστων λύσεων, η διασφάλιση της ποιότητας των προϊόντων και η πιστοποίηση των συστημάτων μας σύμφωνα με τους κανονισμούς και τα πρότυπα αποτελούν στρατηγικό στόχο για τον όμιλο Knauf και τη Διεύθυνση Έρευνας & Ανάπτυξης. Είναι η νοοτροπία αυτή που κάνει την Knauf τόσο επιτυχημένη και μας δίνει κίνητρο για αποτελεσματική ανάπτυξη και καινοτομικές λύσεις.

Στο έντυπο “Έρευνα και Ανάπτυξη Knauf”

παρουσιάζονται τα εργαστήρια δοκιμών μας για ελέγχους προϊόντων και συστημάτων σχετικά με την πυροπροστασία, τα συστήματα εξωτερικής θερμομόνωσης, τον προσδιορισμό οργανικών πτητικών ενώσεων και τη φωτοκατάλυση. Τα εργαστήριά μας και ο εξοπλισμός τους είναι αποδεδειγμένα από τα πλέον ισχυρά και άρτια εξοπλισμένα στον κόσμο. Μέσω της συμμετοχής σε διεθνείς οίκους τυποποίησης προϊόντων και διαδικασιών, τα στελέχη του τμήματος Έρευνας & Ανάπτυξης παραμένουν άριστα ενημερωμένα και εξασφαλίζουμε την τήρηση όλων των σχετικών κανονισμών στις δοκιμές και στις αναλύσεις μας.

Η αποδεδειγμένα εξαιρετική ποιότητα του εξοπλισμού των εργαστηρίων δοκιμών μας και των μεθόδων μας, μας επιτρέπει να διεξάγουμε επίσημα πιστοποιημένες δοκιμές για την πιστοποίηση προϊόντων & συστημάτων. Το διεθνές δίκτυο ιδρυμάτων και πανεπιστημίων με τα οποία συνεργαζόμαστε μας παρέχει πρόσβαση σε μια πληθώρα περαιτέρω επιλογών ανάλυσης.

Greece

Σας παρουσιάζουμε το νέο ιστότοπο του εργαστηρίου Ετερογενών Μειγμάτων και Συστημάτων Καύσης της Σχολής Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου. Στον ιστότοπο παρουσιάζονται αναλυτικές πληροφορίες για τα δύο πειραματικά κτήρια που κατασκευάστηκαν στο πλαίσιο του ερευνητικού προγράμματος I-SSB σε Αμφιλοχία και Αθήνα. Επιπλέον, παρουσιάζονται οι μετρήσεις στα δύο κτήρια σε πραγματικό χρόνο, λίστα όλων των δημοσιεύσεων που αφορούν το πρόγραμμα καθώς και η υπεύθυνη ερευνητική ομάδα.

http://demohouse.hmcs.mech.ntua.gr/demohouse_site/

Περισσότερες πληροφορίες για το εργαστήριο Ετερογενών Μειγμάτων και Συστημάτων Καύσης της Σχολής Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου δείτε εδώ .

Greece

The I-SSB is a colaborative research project partly funded by the European Comission, under the 6th Framework Programme - Priority III - NMP4. It started in January 2007 and it will last for 4 years. 22 partners-industry-led-from 11 countries are collaborating to develop a new modular lightweight multi-level building concept based on multi-functional, load bearing dry-wall systems coupled with smart steel-stud/frame components.

New sensors will actively control dynamic oscillations of building components together with wireless networks to monitor and regulate component performance with self-healing and auto-correcting characteristics.

Anti-vibration, fire-safety technologies and new building materials will be developed and applied in pre-identified parts of the building.

Innovative 3D virtual design strategies and procedures will consider the load bearing of partition walls resulting in considerable improvement of structural stability and fire safety and significant savings in primary resources.

The new concept will secure safety in cases of risk, comfort through monitoring of indoor parameters and space flexibility.

It will move workforce from site to the factory contributing to social cohesion and sustainable development.

The characteristic dynamic response of steel-frame lightweight constructions to external perturbations, the very good mechanical strength properties, thermal insulation, fire-resistance, ease of application and retrofitting capabilities of dry-wall systems render them ideal for the new building concept that will radically innovate the EU modular building sector.

The IP addresses re-engineering of production chain of dry-wall steel-frame buildings (value chain analysis, techno-socio-economic, market analysis), development of innovative technologies for multi-story buildings (self-healing building materials and components, active control sensors-actuators, embedded networks, hybrid structural system, computational and virtual design tools), environmental performance (recycling potentials, risk analysis), demonstration in a full-scale purpose built model house, training - innovation and management activities thus demonstrating vertical integration of the supply chain.

For more information please visit http://www.issb-project.com/

Greece

The overall objective of MESSIB project is the development, evaluation and demonstration of an affordable multi-source energy storage system (MESS) integrated in building, based on new materials, technologies and control systems, for significant reduction of its energy consumption and active management of the building energy demand.

The MESSIB basic principles are based on the combination of:

1. Rational use of thermal energy for primary energy savings and for increasing the building indoor comfort. Improvement of thermal energy storage developing active building components based on phase change technologies. The isothermal process improves the use of heating and cooling units by decreasing energy requirements. The adequate integration and use of RES decreases further peak loads, thereby reducing grid power needs.

2. Improvement of electrical energy storage, equally integrated with RES in order to shift the demand with the production and to optimise the use of low cost “off peak” power from the grid. This will lead to a reduction of the overload time increasing the security and efficiency of the network.

3. Integration of the technologies in the building. Each of the technologies developed in the project and the whole system will be integrated with conventional installations (heating ventilation and air conditioning systems (HVAC) and electrical grid) optimizing their functionality.

4. An active control/actuation system will smartly manage the profile of use of each storage system and their interactions. This will contribute to the intelligent management of building energy demand and to ensure its security, quality and reliability by selecting how to operate, by cutting in to the conventional network in times of high grid demand or through a parallel supply topped up by low cost power or external sources.

MESS is composed by two thermal and two electrical storage systems, integrated with the building installations and a control system to manage the building energy demand. This new concept will reduce and manage smartly the electrical energy required from the grid favoring the wider use of renewable energy sources (RES) in any type of building and district level. It will reduce raw material use for thermal performance and improve the indoor environment, the quality and security of energy supply at building, including Cultural Heritage (CH), and district level. Furthermore, a significant reduction of the energy unit cost for end-users will be achieved.

To install additional conventional energy generation and distribution network assets with the capacity to accommodate to the maximum (short-term) demand is economically inefficient. Furthermore, productivity decreases when power plants cannot operate at full capacity in periods of reduced demand. The basic idea behind energy storage in buildings is to provide a buffer to balance fluctuations in supply and demand. The demand fluctuates in cycles of 24 hour periods (day and night), intermediate periods (e.g. seven days) and according to seasons (spring, summer, autumn, winter). MESSIB systems for storing energy (thermal/electrical) will cover these cycles, with short-term, medium-term or long-term (seasonal) storage capacity.

For more information please visit http://www.messib.eu/

Greece

New µ-CHP network technologies for energy efficient and sustainable districts.

The overall objective of the FC-DISTRICT project is to optimize and implement an innovative energy production and distribution concept for sustainable and energy efficient refurbished or new "energy autonomous" districts, exploiting decentralized co-generation coupled with optimized building and district heat storage and distribution network.

The concept is based on dynamic heat exchange between the buildings (fitted with Solid Oxide Fuel Cells) for energy production collaborating with improved thermal storage and insulation building systems, the distribution system (optimized piping and district heating with or without a heat buffer) and the consumer (new business and service models), aiming to achieve energy balance at district level.

A technology in scope of the project is a high temperature solid oxide fuel cell (SOFC) with versatile fuel processor for gas reforming and optimized peripheries making possible successful integration with district networks. FC-DISTRICT integrates a proven innovative SOFC technology with heat management at building and district level (building thermal storage coupled with intelligent distribution networks) to serve the consumer needs for economy-ecology-sustainability. It introduces a new paradigm in energy efficiency by developing materials, technologies, methodologies and systems specifically intended for integration at district level.

Advanced insulation materials will be developed and implemented for the improvement of building and pipe thermal response. The energy reduction will originate from improved efficiency and cost effective high temperature (SOFC), to act as μ-CHP systems providing demand-flexible electricity and heat to the building and district, coupled with optimised energy and power distribution networks that will optimally control heat storage at building and district level.

For more information please visit http://fc-district.eu/#